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SUMMARY 
A grid-embedding technique for the solution of two-dimensional incompressible flows governed by the 
Navier-Stokes equations is presented. A finite volume method with collocated primitive variables is 
employed to ensure conservation at the interfaces of embedding grids as well as global conservation. The 
discretized equations are solved simultaneously for the whole domain, providing a strong coupling between 
regions of different refinement. The formulation presented herein is applicable to uniform or non-uniform 
Cartesian meshes. The method was applied to the solution of two scalar transport equations, to cavity flows 
driven by body and shear forces and to a sudden plane contraction flow. The numerical predictions are 
compared with the exact solutions when available and with experimental data. The results show that neither 
the convergence rate nor the stability of the method is affected by the presence of embedded grids. Embedded 
grids provide a better distribution of grid nodes over the computational domain and consequently the 
solution accuracy was improved. The grid-embedding technique proved also that significant savings in 
computing time could be achieved. 
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1. INTRODUCTION 

The numerical solution of fundamental or practical engineering flow problems requires in 
most cases the solution of the Navier-Stokes equations. Numerical solutions based on finite 
differences/finite volume methods require the overlapping of a discrete computational domain 
over the physical domain. To decrease local truncation errors in regions of steep gradients or to 
resolve different flow length scales, it is necessary to use a very large number of mesh points. 
However, the use of a refined mesh very often brings high densities of mesh points in regions 
where they are required and also where they are not required. This leads to the use over the whole 
computational domain of too many mesh points and to very long computing times to achieve 
convergence. Several different alternatives have been devised to overcome this problem, namely 
overlapping grids, zonal methods and grid embedding. Other techniques such as the multigrid 
method and adaptive schemes can be used and combined with these methods. 

A technique often employed for treating complicated flow geometries is to use several grids, 
each one optimized for an individual zone of the flow field. The problem of grid generation is 
greatly simplified when grids are allowed to overlap,' but the transfer of information between the 
grids becomes complicated and it is difficult to ensure global conservation. Thus this method has 
been mainly used for the prediction of transonic flows together with a full potential formulation2 
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or solving the Euler  equation^.^ A more popular approach is the zonal method where the 
individual grids are patched together rather than overlapped. It is also possible to solve different 
equation sets in the different zones. This method has been used to solve the full potential 
equations: the Euler  equation^,^.^ the Eulerpavier-Stokes and the incompressible 
Navier-Stokes equations. lo  

Grid embedding is a technique where a single coarse grid covers the whole domain and local 
refinement is carried out in the regions of high gradients without changing the basic grid 
structure. This method has been applied to the prediction of transonic flows using the full 
potential equations," the small-disturbance potential equationl2 or the Euler equa t i~ns '~  and 
laminar incompressible f l 0 ~ s . I ~  Adaptive schemes used in conjunction with grid embedding have 
been applied to compressible flows using either the Euler equations15-' or the Navier-Stokes 
 equation^.'^' l 9  The multigrid method has also been coupled with grid embedding in the 
prediction of transonic flow fields using a potential flow analysis.20 Adaptive techniques and the 
multigrid method have both been used together with grid embedding to predict incompressible 

Each zone in zonal methods or each embedding mesh in grid-embedding techniques is 
generally considered independent. As recognized by Fuchs," the only interaction among the 
different subdomains is done by transferring boundary data. This degrades the efficiency and 
perhaps the stability of the numerical method. 

In this paper a new grid-embedding method is presented where the whole domain is treated 
simultaneously regardless of the level of grid refinement. This enhances the coupling between 
regions of different level of refinement and does not reduce either the efficiency or the stability of 
the method. Conservation at grid interfaces is ensured as well as full conservation. The 
Navier-Stokes equations are solved in non-staggered grids using a primitive variable, finite 
volume method. The method has been used to predict two-dimensional, steady, laminar, 
incompressible flows. 

In the next section the numerical method developed is described for a general scalar transport 
equation and for the flow equations in particular. The method has been applied to the solution of 
two test cases described by only one scalar transport equation as well as to the flow equations for 
three test cases: a cavity flow driven by combined shear and body forces, the classical lid-driven 
cavity flow and a sudden plane contraction. Results and discussion are presented in Section 3. In 
the last section the main conclusions of the present study are drawn. 

-23 

2. DISCRETIZATION PROCEDURE AND SOLUTION ALGORITHM 

2.1. Basis of local grid rejnement 

The physical domain is discretized using a coarse rectangular mesh, either uniform or non- 
uniform. In regions of high gradients, finer mesh spacing is required and embedded cells are used. 
These embedded cells are generated by halving on a cell-by-cell basis the mesh spacing in both the 
x- and y-direction. This process can be repeated, leading to as many levels of grid embedding as 
desired. 

Each cell is numbered sequentially and its neighbours are stored in unidimensional arrays. 
Four arrays are necessary to store the north, south, east and west neighbours of each grid node. 
The dimension of these arrays is slightly higher than the total number of grid nodes. This small 
overhead in the dimension of the arrays is required to keep track of interfaces between regions of 
different grid refinement. Three additional points for each cell interface between regions of 
different level of refinement are stored: two on the coarser side of the interface and one on the 
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other side. These auxiliary points are also stored sequentially. Thus each array contains 
sequentially the information concerning the neighbours of the grid nodes, followed by the 
neighbours of auxiliary points on the finer side of the grid interface and finishing with 
the neighbours of auxiliary points on the coarser side of the grid interface. 

This data structure can be exemplified by referring to Figures 1 and 2. Grid node N1 (see 
Figure 1) on the finer side of the interface has the south neighbour P1. This is an auxiliary point 
whose west and east neighbours are grid nodes W and P respectively. Grid node S (see Figure 2) 

Ax I 

Figure 1. Coarse-grid control volume 

L 
Figure 2. Fine-grid control volume 
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on the coarser side of the interface has the north neighbour e, an auxiliary point whose west and 
east neighbours are grid nodes P and E respectively. 

Notice that the dimension of the arrays where the dependent variables are stored is equal to the 
number of grid nodes. Only the dimension of the four arrays containing the neighbours of each 
cell is slightly higher, as explained above. 

With this data structure and provided the refinement ratio is kept equal to two, all possible 
interfaces are of the kind depicted in Figures 1 and 2 irrespective of the refinement level. No 
additional complications arise from the use of several levels of grid refinement. It is only necessary 
to give as input the refinement level desired for each cell of the coarsest grid. 

The storage of the information in unidimensional arrays has several advantages. First, the 
whole domain can be treated at once regardless of mesh refinement. Secondly, when the physical 
domain is not rectangular, as, for example, in a sudden contraction, significant savings in storage 
can be achieved. Finally, unidimensional arrays are favourable to speed up the calculations in 
vectorial computers. 

2.2. Discretization of a transport equation 

scalar 4 can be written in Cartesian orthogonal co-ordinates as 
The governing differential equation for the steady two-dimensional transport of a general 

where U and V are the velocities in the x- and y-direction respectively, p is the density, r+ is the 
diffusion coefficient and S ,  is a volumetric source strength. 

The finite volume method is used to discretize the integrated form of equation (1). The diffusive 
and source terms are approximated with central differences and the convective term is discretized 
by the hybrid central/upwind differencing scheme.24 When mesh embedding is not considered, 
the discretized equations can be cast in the following form (see Reference 25 for details): 

a p 4 p  = C ai #i + Su, (2) 

where the index i runs over all neighbouring points (N, S, E, and W), Su denotes the source term 
and the coefficients ap and ai are combined convection/diffusion fluxes across the faces of the 
control volume. When the hybrid scheme is used, these coeficients are given by the following 
well-known expressions appropriate for programming purposes: 

aN = D, + max (- C,, 0), 

a, = D, + max (C,  , O), 

aE =D, +max (- C,, 0), 

a, = D, + max (C,,,, 01, 

i ’  

(34 

(3b) 

(34 

( 3 4  

a,=C ai.  
i 

In these equations the lowercase letters identify the faces of the control volume. The diffusive 
fluxes are denoted by D and the convective ones by C. These fluxes are evaluated as 

C n = P n  V , A x ,  (44 
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and 

and similarly for the south and west faces. Distances between nodes N and P and nodes E and P 
are denoted by 6yNp and 6xEP respectively. 

When grid embedding is used, interfaces between regions of different refinement need particu- 
lar attention. In all such interfaces there is one grid node on one side of the interface and two 
nodes on the other side, as sketched in Figure 1. To exemplify the method developed here, only 
one interface between regions of different refinement is considered, at the north face of the control 
volume, but other interfaces can be handled as well. 

Perhaps the most attractive feature of the control volume formulation is that the resulting 
solution implies integral conservation of quantities such as mass, momentum and energy over any 
group of control volumes, including the whole domain. Thus special care was taken in order to 
ensure conservation across the interfaces. This can be automatically ensured if fluxes are 
calculated in the same way for grid nodes on both sides of the interface. Hence the fluxes are 
calculated using the dependent variable values at grid nodes N1 and N2 and the auxiliary points 
P1 and P2 represented in Figure 1. Points P1 and P2 have the same y-co-ordinate of the grid node 
P and the x-co-ordinates are equal to the x-co-ordinates of points N1 and N2 respectively. When 
the control volume associated with node N1 is considered, the south flux is calculated using node 
N1 and point P1. Similarly, node N2 and point P2 are used to calculate the south flux for the 
control volume centred in node N2. Finally, the flux across the north interface for the node P 
control volume is the sum of two terms, one calculated using node N1 and point P1 and the other 
calculated using node N2 and point P2. In this way the discretized equation for the control 
volume centred in node P can be written as 

where the summation extends over points S, E and W only, as well as the summation for 
evaluating up. 

The problem of dealing with an interface between regions with different refinement has been 
replaced by the problem of handling the second and third terms of the right-hand side of the 
previous equation. If the two terms were included in the source tern S,,  this would strongly 
weaken the link between node P and nodes N1 and N2. There would be an explicit link through 
the source term S, rather than an implicit link through the coefficients ui and so the interface 
would behave as a boundary. Consequently the rate of convergence would decrease significantly. 
On the other hand, if the terms QN1 c $ ~ ~  and uN2 4N2 were included in the summation and the terms 
~~~4~~ and aN2r$PZ were included in the source term, the aforementioned problem would be 
solved but in this case we would end up with a coefficient matrix which is not diagonally 
dominant. This would be only a restriction to the choice of the solver but we prefer to avoid this 
additional complication. The approach followed here begins with the evaluation of 4p1 and q5p2 
by means of linear interpolation from neighbouring grid nodes: 
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Introducing these expressions in equation (6), one obtains, after simple algebraic manipulations, 

The second and third terms on the right-hand side of this equation can be included in the 
summation, ensuring a strong coupling between grid nodes on opposite sides of the north 
interface, whereas the fourth and fifth are included in the source term. Thus the final discretized 
equation can be cast in a form similar to equation (2): 

+#Ip=c a ; 4 i +  s:, (9) 
i 

where the summation includes the five neighbours (S, E, W, N1 and N2). Combined convection/ 
diffusion coefficients are given by 

a$ = a,, ( 104 

&=a,, ( 1 Ob) 

&=a,, (W 

where 

Cn 1 = P. 1 v n  1 (AxP), 

Dnl  =rnl(Ax/2)/sYPNl, 

and similarly for C,, and Dn,. The source term is written as 

The same ideas are used to write a discretized equation for a control volume on the opposite 
side of the interface as represented in Figure 2, where point P is the correspondent to point N1 in 
Figure 1. For the sake of simplicity, only one interface between regions of different refinement is 
considered again. The flux across the south boundary is calculated with the help of point S1, 
where the dependent variable is calculated from 

4 s l = ( ~ x s w s l 4 s  + ~ X S S 1 4 S W ) / ~ ~ s s W ~  (13) 
The introduction of this expression in the discretized equation yields 
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This is the equation corresponding to equation (8) and the summation now includes neighbours 
E, W and N. Equation (9) still holds with the summation extending over neighbours N, S, E and 
W and with coefficients given by 

ah = aN, (154 

ak=aE, (15W 

a;Y=aw, (W 

and 

Thus the discretized equations for any control volume can be written as equation (9). Whenever 
common interfaces are presented, the coefficients of this equation are calculated in the conven- 
tional way using equations (3)-(5). In the boundaries of embedding meshes the coefficients are 
modified as described above. 

The method used to obtain values required for the flux balance at interfaces ensures conserva- 
tion and is based on linear interpolations. Although more complex interpolation schemes could 
have been used, the present one was chosen because despite its simplicity it has yielded accurate 
predictions for the test cases studied. 

2.3. Discretization of the pow equations on a non-staggered grid 

laminar, incompressible flow can be written as 
The governing differential equations for mass and momentum conservation in a 2D, steady, 

aaX ( E) ,ay( :) 2 a a 
- ( p U U ) + - ( p V U ) = -  p- +- p -  --, 
ax a Y  

av ap 
:x ( a,:> &( aJ ay 

a a 
- ( p U V + - ( p V V ) = -  p -  +- p -  --, ax a Y  

where p is the static pressure and p is the dynamic viscosity. The terms of these equations are 
identical to those of equation (1). Indeed, setting 4 = 1 in equation (l), the continuity equation (17) 
is recovered, whereas setting 4= U or 4= V leads to the momentum equations. Thus the 
discretization of these equations follows the steps previously described. However, the coupling 
between pressure and velocity poses new problems which traditionally have been solved by 
means of a staggered grid. In such a grid the location of the control volumes for the velocity 
components is shifted in such a way that the velocities at the faces of the scalar control volumes 
become directly available. Since there are three sets of control volumes in the two-dimensional 
case, the complexity and the storage requirements are much greater than for a collocated grid. In 



542 P. COELHO, J. C. F. PEREIRA AND M. G. CARVALHO 

the last few years several a ~ t h o r s ~ ~ , ~ ~  have shown that non-staggered grids can produce as 
accurate solutions as staggered ones with no increase in computational effort provided that a 
special interpolation is used to calculate the velocities at the faces of the control volumes. The 
grid-embedding structure would become much more complicated if a staggered grid were used. 
Hence a non-staggered grid was used in this work. 

2.4. Pressure-velocity coupling 

The method described by Peric et ~ l . , ~ ’  which is a modified version of the SIMPLE algorithm 
applied to non-staggered grids, is used here, although underrelaxation is introduced in a different 
way as explained below. 

The U -  and V-momentum equations are solved first using guessed values for the pressure field 
and for the mass fluxes. Pressures at the control volume faces are calculated by linear inter- 
polation. In general, the solution of these equations, denoted by U * and V*, does not satisfy 
continuity and thus a source term appears in the continuity equation given by 

(20) s,= c: - c,* + c: - c;, 
where the asterisk identifies a guessed value. The modification of this expression when an 
interface between grids of different refinement is present is straightforward. Evaluation of the 
convective fluxes requires the calculation of the velocity components at the faces of the control 
volumes. Peric et have shown that if linear interpolation were used to calculate the velocity 
components at the interfaces, decoupling between pressure and velocities would occur. To see 
how this can be avoided, we write the discretized x-momentum equations for grid nodes P and E, 
inFigure 1 or 2, as 

These equations come directly from equation (9) when the primes are dropped for simplicity. The 
asterisks are introduced to identify guessed values and the source term is explicitly written as the 
pressure gradient. The U*-velocity at the cell interface is obtained from equations (21) using 
linear interpolation for the summations (denoted by the overbar in the equation terms) and the 
pressure difference between grid nodes on each side of the interface. This yields 

Hence the cell face velocity depends directly on the pressures at the two neighbour nodes, which is 
the basis of the staggering practice. 

For the interfaces between regions of different refinement the same ideas are used. Thus, 
referring to Figure 1, the north cell face velocity is given by 
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where the overbar denotes the linearly interpolated value from grid node N1 and point P1. 
Values at point P1 are linearly interpolated between grid nodes W and P. A similar equation is 
used to calculate V:,. On the opposite side of the interface (see Figure 2) we have 

where the overbar denotes the linearly interpolated value from grid node P and point S1. Values 
at point S1 are linearly interpolated between grid nodes S and SW. 

To enforce mass conservation, velocity and pressure corrections are introduced as in the 
SIMPLE algorithm: 

Identical expressions can be written at the boundaries of embedding grids. When the velocity 
components are expressed as a sum of estimated plus corrected (identified by the prime) 
components and introduced in the continuity equation, a pressure correction equation results. 
The solution of this equation gives the corrections used to update velocities and pressure as well 
as mass fluxes at the control volume faces. These mass fluxes are used to calculate the convective 
terms in the momentum equations. 

To attain convergence, underrelaxation factors for velocities and pressure are used. The general 
discretized equation (9) is changed according to 

where the primes have been dropped for simplicity, a+ is the underrelaxation factor and b p  is the 
&value at node P in the previous iteration. The velocity at a cell face is calculated according to 
the pressure-weighted interpolation method suggested by Majumdar28 and Miller and 
and examined by Kobayashi and Pereira3' for flows with rapidly varying pressure gradient 
regions yielding solutions independent of relaxation factors. Using this method, equations (21) 
and (22) read 

Grid embedding does not present further complexities. 
For the solution of the systems of linear equations, two different methods have been used 

aiming to identify which one would be more suitable to employ with the grid-embedding 
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technique. One is the biconjugate gradient method3' using an incomplete block-LU decomposi- 
t i ~ n ~ ~  as preconditioning. The other is a modified version of the Gauss-Seidel line-by-line 
iteration procedure. With grid embedding a grid node can have more than four neighbours and 
this requires a modification of the usual version of the method. The new feature is the increase of 
the number of sweeps whenever an interface between regions with different grid refinement is 
found in order to make it possible to apply the Thomas algorithm in each sweep. This can be 
better explained with the help of Figure 1. A sweep in the x-direction presents no problems since 
the values of the variable at the south and north interfaces are temporarily assumed as known. 
But in the y-direction there is a problem since grid node P has two north neighbours. The idea is 
to perform two sweeps. In the first one the values of the variable at grid nodes W, E and N2 are 
assumed as known and in the second sweep the values at grid nodes W, E and N1 are assumed as 
known. Thus the number of sweeps in a given direction is dictated by the maximum level of grid 
refinement in that direction. 

The convergence criterion is to demand the normalized sum of the absolute residuals for each 
variable over all the control volumes to be less than or equal to a prespecified value. The 
normalization value is the inlet mass flow rate for the pressure correction equation and the inlet 
momentum for the momentum equations. 

3. RESULTS AND DISCUSSION 

3.1. Case 1: scalar transport equation 

The general transport equation (1) has been solved for a case where an analytic solution 
given by 

4 =sin (nx) cos (ny), (29a) 
U = -In sin (nx)  sin (ny), (29b) 
v= - In cos (AX) cos (ny), (294 

s, = 2n2 4. (294 
The density and the diffusion coefficient were set equal to unity and 1 is an independent solution 
parameter which may be used to change the Peclet number. The calculated analytic solution 
(equation (29a)) is shown in Figure 3 for the domain X E  [0, 11, Y E  [ -05,053.  Owing to the 
symmetry of the problem, the calculation domain was restricted to 0.5 < x <  1, O < y < O 5  with 
symmetry boundary conditions imposed on x = 0 5  and y = 0. 

The analytical and numerical solutions were compared by means of the average absolute errors 
calculated over the computational domain: 

N 
C [4i - sin (nx) cos (ny)] 

N 
E 4- - i = l  , 

where N is the number of grid nodes and 4i denotes the numerical solution of each grid node. 
Figure 4(a) shows a 40 x 40 uniform grid and the corresponding contour levels of the local 

absolute errors obtained with this grid. It can be seen that maximum errors occur close to the left 
bottom corner of the calculation domain and so this region was covered with an embedding grid 
as shown in Figure qb). When a conventional code is used, this refinement must be extended up 
to the opposite boundaries and such a grid is represented in Figure qc). The corresponding 
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1 

0.5 

0 

-0.5 

Figure 3. Streamlines of the flow 

Table I. CPU time and mean value of absolute errors for the grids used in test case 1 

Base Type of grid Embedding Number of CPU time -% 
grid (see Figure 4) grids grid nodes (4 

20 x 20 4(a) No 400 15 3-6 x 10-4 
Yes 448 18 3.2 x 10-4 

25 2.1 x 10-4 
20 x 20 4(b) 
24 x 24 4(4 No 576 

Yes 592 26 2 1  x 10-4 
No 784 39 1.4 x 10-4 

20 x 20 4(b) 
28 x 28 4(c) 

40 x 40 4(4 No 1600 98 0 8  x 
40 x 40 4(b) 
48 x 48 4(4 No 2304 

40 x 40 4(b) 
56 x 56 4(c) 

Yes 1792 107 0 7  x 10-4 
150 0 4  x 10-4 

Yes 2368 179 0-5 x 10-4 
No 3136 268 0.3 x 10-4 

contours of absolute errors show that the local errors decrease in the regions where grid 
refinement was chosen. 

Ail the meshes used in the solution of this problem are described in Table I. Only one level of 
grid refinement was used for embedding grids. Results presented in Table I were obtained using 
the preconditioned biconjugate gradient method. This method yielded for this linear problem a 
faster convergence than the line Gauss-Seidel method. The &parameter (see equations (29)) was 
set equal to unity, yielding a maximum local Peclet number of less than two. Therefore central 
differences are used for convection discretization and very small solution errors were found (see 
Table I). Thus the idea of using finer grids in this case is to investigate the effect of the use of 
embedding grids on convergence and computing time. Convergence was achieved when the sum 
of the residuals was less than 
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0.5 

0 
0.5 X 1.0 

0.5 

0 
0.5 X 1.0 

Figure 4. Typical meshes and local absolute error contours for test case 1: (a) uniform 20 x 20 mesh; (b) 20 x 20 coarse 
grid with one level of refinement; (c) non-uniform 28 x 28 mesh. Contour values: A, 7 x lo-*; B, 6 x lo-*; C, 4 x 

D, 2 10-4; E, I 10-4; F, 0.8 x 10-4; G, 0.6 x 10-4; H, 04 x 10-4; I, 0.2 x 10-4; J, 0.1 x 10-4 
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The results listed in Table1 show, for example, that the solutions obtained with the grid 
represented in Figure 4(c) with 576 grid nodes and a grid similar to the one shown in Figure 4(b) 
but with a larger embedding grid (592 grid nodes) required about the same CPU time. However, a 
reduction of 30% in CPU time can be obtained with an embedding grid when compared with a 
conventional grid with the same refinement extended up to the boundaries. The CPU time can be 
markedly reduced if more than one level of grid refinement is used. Calculations were also 
performed by changing the parameter I between 0.1 and 100, but they are not presented here 
since the results are qualitatively similar. 

3.2. Case 2: transport of a step change 

The transport of a step change in a uniform velocity field is a classical test case for assessing 
convection discretization schemes. Here the idea is not to assess the discretization scheme but to 
show that the accuracy can be improved when a given number of grid nodes are distributed 
according to the features of the solution by means of embedding grids. 

The scalar transport equation (1) with no source term is solved in a square domain. The 
velocity field is uniform and its direction defines the boundary conditions. A line with the 
direction of the velocity passing through the centre of the domain originates two regions. The 
boundary $-value is equal to unity on the upper region and zero elsewhere. Thus the solution 
presents a steep gradient close to that line. When the velocity is aligned with the x- or y-direction, 
the solution is easily predicted, but when the velocity vector is skewed with grid lines and local 
Peclet numbers are high, false diffusion yields poor results for most convection discretization 
schemes. 

Solutions are presented for a Reynolds number equal to 500, taking the side of the square 
domain as the characteristic dimension. The angle 8 between the velocity vector and the 
x-direction was considered equal to 45" and 22" for the two cases studied. Figure 5 shows some of 
the meshes used. Several levels of embedded grids were used, with a maximum level of refinement 
along the direction of the velocity and passing through the centre of the domain where a steep 
gradient occurs. 

Figure 6(a) shows the profiles corresponding to the vertical centreline and 8 = 45" for several 
meshes with a similar number of grid nodes. Each profile presents the results corresponding to a 
uniform grid and an embedding one (obtained from a coarser grid refined along the direction of 
the velocity vector). As expected, the numerical solution only becomes close to the exact one when 
the dimension of the cells leads to a local absolute value of the Peclet number of less than two. In 
fact, this is the limit value above which the first-order upwind differencing scheme suffering from 
false diffusion is used. However, the point we want to stress here is that for two grids with about 
the same number of grid nodes, the one which has been locally refined yields significantly better 
results. To attain the same level of accuracy with a conventional code, the refinement would have 
to be extended from one boundary to the opposite one. This would require a much larger number 
of grid nodes, with a consequent increase in CPU time. 

When the angle 8 is reduced to 22", the behaviour of the solutions shown in Figure qb) is 
identical to that for 8=45" but the problem of false diffusion is not as severe as previously. 

In both cases, 8 = 22" and 45", Figure 6 shows that the numerical solution through the 
interfaces of the embedding grid is smooth. 

3.3. Case 3: cavityfiow driven by combined shear and body forces 

The 2D steady, laminar, incompressible flow equations were solved for a cavity where the flow 
is driven by combined shear and body forces. This test case was studied because the exact solution 
is known and given by Shih et al.34 The boundary U- and V-velocities are zero everywhere except 
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I I I I I I I t i i I I i i I I  

(4 
Figure 5. Typical meshes for test case 2: (a) uniform 40 x 40 mesh (1600 grid nodes); (b) embedding grid for 0=4Y (1474 

grid nodes); (c) embedding grid for 0 = 22" (1726 grid nodes) 

along the top surface, where V is zero but there is a positive U-velocity driving the flow. 
Calculations were performed for Re = 1 and 10, but since no significant differences were found, 

only the results for Re= 1 will be presented here. Both of the aforementioned methods for the 
solution of the systems of linear equations were tried. It was found that when the underrelaxation 
parameters are optimized as well as the number of solver iterations, the preconditioned 
biconjugate gradient method converges faster than the Gauss-Seidel line-by-line iteration 
procedure. However, the convergence rate is much more dependent on the underrelaxation 
parameters when the biconjugate gradient method is employed. Thus all the results presented 
from now on were obtained using the line-by-line iteration procedure. The underrelaxation 
parameters used were 0-9 and 0 1  for the velocities and for the pressure respectively. 

The solution of the problem using a uniform 20 x 20 mesh has shown that the results were close 
to the exact solution except near the bottom and side boundaries. Thus a coarser base mesh with 
embedded grids close to those boundaries was chosen. Both grids are shown in Figure 7. Figure 8 
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(a) (b) 
Figure 7. Meshes for test case 3: (a) uniform 20 x 20 mesh (400 grid nodes); (b) 16 x 16 coarse grid with one level of 

refinement (394 grid nodes) 

shows that the embedded mesh yields more accurate predictions for planes near the boundaries. 
Far from the boundaries both meshes yield good results. The CPU time required to attain 
convergence was 124 s for the embedded mesh and 140 s for the uniform one. 

3.4. Case 4: lid-driven cavity flow 

Although the previous test case has the advantage of the existence of an analytical solution, no 
recirculation regions occur on the corners and the use of a coarse mesh may not reveal the 
necessity of a fine resolution in recirculating regions close to the corners. The classical lid-driven 
cavity flow where no body forces are present and the flow is driven only by the lid moving with 
uniform velocity is a more severe test case since several recirculating regions can appear 
depending on the Reynolds number. Owing to the impossibility of deriving the exact solution for 
this case, the grid-independent numerical results obtained by Ghia et ~ 1 . ~ ’  are considered as 
reference values. 

Calculations were first performed for uniform grids with 129 nodes in each direction for 
Re= 100 and 1OOO. The results were found to be in close agreement with those reported by 
Ghia et for the same mesh and so they will be used for comparison purposes. 

Typical meshes used for this test case are shown in Figure 9. The first mesh is uniform with 64 
grid nodes in each direction (4096 grid nodes), the second is a 32 x 32 base mesh with two levels of 
refinement close to the boundaries (4288 grid nodes) and the last is a 64 x 64 base mesh with one 
level of grid refinement (9472 grid nodes). 

For Re= 100 the underrelaxation factors of the previous test case, 0-9 for velocities and 0.1 for 
pressure, were used. The embedded grid shown in Figure 9(b) yields accurate predictions 
everywhere. Near the boundaries they are much better than those obtained with the uniform 
mesh shown in Figure 9(a). Two examples can be seen in Figure lqa). The required CPU time for 
the embedded grid is less than 50% of the CPU time for the 64 x 64 mesh with a similar number of 
nodes and about 26 times smaller than that required with 129 x 129 grid nodes. 

Numerical solutions obtained for Re= loo0 with the embedding grid used previously, on a 
32 x 32 base, show that the grid is too coarse since the predicted results (not shown here) were far 
from those predicted using a very refined mesh. On the other hand, the 64 x 64 uniform grid leads 
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Figure 8. Velocity profiles for the cavity flow driven by combined shear and body forces: -, exact solution; 0, uniform 
grid shown in Figure 7(a); x , embedding grid shown in Figure 7(b) 

(a) (b) (4 
Figure 9. Meshes for test case 4 (a) uniform 64 x 64 mesh (4096 grid nodes); (b) 32 x 32 coarse grid with two levels of 

refinement (4288 grid nodes); (c) 64 x 64 coarse grid with one level of refinement (9472 grid nodes) 
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Figure Iqa). Velocity profiles for the lid-driven cavity flow, Re= 100: -, 129 x 129 uniform grid; 0,64 x 64 uniform 
grid; +, embedding grid shown in Figure 9(b) 
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Figure lqb). Velocity profiles for the lid-driven cavity flow, Re= 1ooO: -, 129 x 129 uniform grid; 0,64 x 64 uniform 
grid; x , embedding grid shown in Figure 9(c) 

to significant errors near the boundaries but the results are accurate elsewhere. Results obtained 
with this mesh as well as with the embedding mesh shown in Figure 9(c) are compared with the 
129 x 129 uniform mesh in Figure lqb). The embedding grid yields good predictions and the 
savings in CPU time over the finer uniform mesh exceeded 60%. 

3.5. Case 5 :  sudden plane contraction 

The experimental data obtained by Durst et al.36 for laminar two-dimensional flow through a 
plane duct with a sudden contraction constitute the last test case. The channel flow consists of a 



CALCULATION OF LAMINAR RECIRCULATING FLOWS 553 

duct 10 mm in height and a contraction ratio of 4: 1, yielding 2.5 mm for the duct height 
downstream of the contraction. Owing to the symmetry of this geometry, computations were only 
carried out for one half of the duct. Inlet conditions were taken from the experimental data. The 
Reynolds number based on the inlet mean velocity and on the duct height was equal to 95. 

Computations were carried out on uniform grids with 40 x 24,SO x 48,160 x 96 and 320 x 192 
grid nodes in the longitudinal and transverse co-ordinate directions respectively. Error estimation 
based on Richardson extrapolationz2 was carried out and the results are given in Figure 11. They 

)B C 1 

(4 
Figure 11.  Error estimation for the sudden plane contraction, 1 Uk- Uz,,l/U,,,*x,in,e, (A, 0.2; B, 0.1; C, @01; D, O.OOl):'(a) 2h, 

40 x 24 uniform grid; h, 80 x 48 uniform grid; (b) 2h, 80 x 48; h, 160 x 96; (c) 2h, 160 x 96; h, 320 x 192 
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(a) (W 
Figure 12. Meshes for test case 5: (a) 80 x 48 uniform grid (2400 grid nodes); (b) 40 x 24 coarse grid with three levels of 

refinement (2430 grid nodes) 
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show that larger errors occur near the contraction and so this is the region where embedding grids 
should be used. 

Figure 12 represents the embedding grid used (2430 grid nodes) as well as the 80 x 48 uniform 
mesh with a comparable number of grid nodes (2400). Several predicted velocity profiles are 
shown in Figure 13 along with the available data. The co-ordinates are taken from a frame 
located at the contraction plane. Solutions obtained for the meshes shown in Figure 12 and for 
the finer uniform mesh used (320 x 192) were plotted. However, it was found that the embedding 
grid yields everywhere results virtually equal to those obtained with the finer uniform mesh and 
the two solutions are hardly distinguishable. They both compare favourably with the data and 
the differences are in the range of experimental uncertainty. The velocity profiles at x = - 2.5 
and - 1.0 mm confirm that the solution computed with an embedding grid is smooth through 
interfaces between regions of different levels of refinement. The 80 x 48 uniform mesh leads to 
good results except near the contraction, where it departs markedly from the other solutions. The 
CPU time required to obtain convergence was similar for the meshes with about the same 
number of grid nodes. However, if the accuracy attained with the embedding grid is to be 
obtained with a conventional mesh, then savings in CPU time become evident. For example, the 
solution for the 160 x 96 uniform grid requires about 14 times more CPU time than the solution 
obtained using the embedding grid. 

4. CONCLUSIONS 

A grid-embedding technique for the solution of two-dimensional incompressible flows governed 
by the Navier-Stokes equations and continuity equation was presented using the finite volume 
method and a non-staggered grid system. The main features of the method consist of the 
simultaneous solution of the finite difference equations for the whole computational domain for 
any degree of local grid refinement. Five different test flow cases were solved and the main 
conclusions may be summarized as follows. 

(i) The grid-embedding technique proves to be adequate to improve the accuracy of the 
solution of the elliptic form of the flow equations when compared with standard Cartesian 
meshes using the same number of control volumes. 

(ii) The interpolation practices described in the paper for the calculation of control volume 
fluxes across the interfaces have proved to yield stabilizing effects in the iterative 
procedure. 

(iii) The use of the SIMPLE solution algorithm for pressure-velocity coupling was successfully 
implemented with the grid-embedding technique. Good agreement was found between the 
predictions and the analytical solutions or experimental results for the five test flow cases 
analysed. 

(iv) The solutions obtained with the grid-embedding technique yielded a large reduction in 
computing time compared with standard grids to achieve the same accuracy. 

(v) For complex flow geometries where rectangular solid boundaries are immersed in the 
computational domain, e.g. flow in a sudden plane contraction, the present technique can 
yield large memory savings. 

(vi) The present technique can be improved by the incorporation of an intelligent adaptive 
embedding grid based on any error estimation analysis. 
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